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!x(t) = dx(t)

dt
= f[x(t),u(t)]

!! Dynamic Process!
!! Neglect disturbance effects, w(t)!
!! Subsume p(t) and explicit dependence on t in the 

definition of f[.]!

The Dynamic Process!
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Trajectory of 
the System!

 
!x(t) = dx(t)

dt
= f[x(t),u(t)]

Integrate the dynamic equation to determine the 
trajectory from original time, t0, to final time, tf!

x(t) = x(t0 )+ f[x(! ),u(! )]d!
t0

t

"
given u(t) for t0 # t
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What Cost Function 
Might Be Minimized?

•! Minimize time required to go from A to B

J = Fuel-use Efficiency( )
0

final range

! dR = Fuel Used

J = dt
0

final time

! =  Final time

J = Cost per hour( )dt
0

final time

! =   $$

•! Minimize fuel used to go from A to B

•! Minimize financial cost of producing a product
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Optimal System Regulation

J = 1
T

x2 (t)
0

T

! dt

 
J =

1
T

xT (t)x(t)!" #$
0

T

% dt =
1
T

x1
2 + x1

2 +!+ xn
2!" #$

0

T

% dt

dim(x) = 1 x 1

dim(x) = n x 1

Minimize mean-square state deviations over a time interval

Scalar variation of a single component

Sum of variation of all state elements

Weighted sum of state element variations

Why not use infinite control?

J =
1
T

xT (t)Qx(t)!" #$
0

T

% dt =
1
T

x1 x2 x3!
"

#
$

q11 q12 q13
q21 q22 q23
q31 q32 q33

!

"
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&
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'
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"
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'
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**
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*

,

-
**

.
*
*

0

T

% dt

n = 3
dim(x) = n x 1
dim(Q) = n x n
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Tradeoffs Between State and 
Control Variations

Trade performance, x, against control usage, u

J = x2 (t)+ ru2 (t)!" #$
0

T

% dt, r > 0

J = xT (t)x(t)+ ruT (t)u(t)!" #$
0

T

% dt, r > 0

dim(u) = 1 x 1

dim(u) = m x 1

J = xT (t)Qx(t)+ uT (t)Ru(t)!" #$
0

T

% dt, Q, R > 0 dim(R) = m x m

Weight the relative importance of state and control components

Minimize a cost function that contains state and control vectors
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Classical Cost Functions 
for Optimizing Dynamic 

Systems!

7

The Problem of Lagrange !
(c. 1780)

The integrand, L[x(t), u(t)], is called the Lagrangian

 

L x(t),u(t)[ ] = xT (t)Qx(t)+ uT (t)Ru(t)!" #$ Quadratic trade between state and control
= 1 Minimum time problem
= !m(t) = fcn x t( ),u t( )!" #$ Minimum fuel use problem

L x(s),u(s)[ ] =  Change in area with respect to differential length, e.g., fencing, ds [Maximize]

min
u(t )

J = L x(t),u(t)[ ]
t0

t f

! dt

dim(x) = n !1
dim(f ) = n !1
dim(u) = m !1 

subject to
!x(t) = f[x(t),u(t)] , x(to ) given
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! x(t f )"# $% = xT (t)Px(t)
t=t f

Weighted square - error in final state

= t final & tinitial( ) Minimum time problem

= minitial &mfinal( ) Minimum fuel problem

Examples of Terminal Cost

The Problem of Mayer !
(c. 1890)

min
u(t )

J = ! x(t f )"# $%

 

subject to
!x(t) = f[x(t),u(t)] , x(to ) given
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The Problem of Bolza (c. 1900) !
The Modern Optimal Control Problem*

Combine the Problems of Lagrange and Mayer

min
u(t )

J = ! x(t f )"# $% + L x(t),u(t)[ ]
t0

t f

& dt•! Minimize the sum 
of terminal and 
integral costs
–! By choice of u(t)
–! Subject to dynamic 

constraint
 

subject to
!x(t) = f[x(t),u(t)] , x(t0 ) given

and with fixed end time, t f
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Augmented Cost Function

 
JA = ! x(t f )"# $% + L x(t),u(t)[ ]+ &&T (t) f[x(t),u(t)]' !x(t)[ ]{ }

t0

t f

( dt

Adjoin dynamic constraint to integrand 
using a Lagrange multiplier to form the 

Augmented Cost Function, JA:

dim !! t( )"# $% = dim f x t( ),u t( ),t"# $%{ } = n &1
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The Dynamic Constraint

The constraint = 0 when the dynamic equation is satisfied

 dim !!T (t) f[x(t),u(t)]" !x(t)[ ]{ } = 1# n( ) n #1( ) = 1

 
f[x(t),u(t)]! !x(t)[ ] = 0 when !x(t) = f[x(t),u(t)] in t0 ,t f"# $%

* Lagrange multiplier is also called
–!Adjoint vector
–!Costate vector
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Necessary Conditions 
for a Minimum!

13

Necessary Conditions 
for a Minimum

!! Cost is insensitive to control-induced perturbations 
occurring at the final time, tf

!! Satisfy necessary conditions for stationarity along 
entire trajectory, from t0 to tf

!! For integral to be minimized, integrand takes lowest 
possible value at every time!
!! Linear insensitivity to small control-induced 
perturbations!

!! Large perturbations can only increase the integral cost!
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 L x(t),u(t)[ ] + !!T (t) f[x(t),u(t)]" !x(t)[ ]{ }

Larger perturbations can only 
increase the integrand!

Integrand
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Integrand of Cost Function must be linearly 
insensitive to control-induced perturbation!

Optimality! Stability?
TBD

The Hamiltonian

H x(t),u(t),!!(t)[ ] = L x(t),u(t)[ ] + !!T (t)f x(t),u(t)[ ]

 

L x(t),u(t)[ ]+ !!T (t) f[x(t),u(t)]" !x(t)[ ]{ } =
H x(t),u(t),!!(t)[ ]" !!T (t)!x(t){ }

Re-phrase the integrand by introducing the Hamiltonian

The Hamiltonian is a function of the Lagrangian,  
adjoint vector, and system dynamics
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Integrand of the augmented cost function



Incorporate the Hamiltonian in 
the Cost Function

 
J = ! x(t f )"# $% + H x(t),u(t),&&(t)[ ]' &&T (t)!x(t){ }

t0

t f

( dt

•! The optimal cost, J*, is produced by the optimal histories 
of state, control, and Lagrange multiplier: x*(t), u*(t), and

•! Variations in the Hamiltonian reflect 
–!integral cost
–!constraining effect of system dynamics

•! Substitute the Hamiltonian in the cost function

 
min
u(t )

J = J*= ! x*(t f )"# $% + H x*(t),u*(t),&& *(t)[ ]' && *T (t)!x*(t){ }
t0

t f

( dt

!! * t( )
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Integration by Parts

udv = uv ! vdu""
Vector definite integral

Scalar indefinite integral

 
!!T (t)!x(t)dt =

t0

t f

" !!T (t)x(t)
t0

t f # !!!T (t)x(t)dt
t0

t f

"

 

u = !!T (t)
dv = !x(t)dt = dx

18

Apply to second term in the integrand



Integrate the Cost 
Function By Parts

 
J = ! x(t f )"# $% + H x(t),u(t),&&(t)[ ]' &&T (t)!x(t){ }

t0

t f

( dt

Cost function can be re-written as

 

J = ! x(t f )"# $% + &&T (t0 )x(t0 )' &&T (t f )x f (t)"# $%

+ H x(t),u(t),&&(t)[ ]+ !&&T (t)x(t){ }
t0

t f

( dt

 

u = !!T (t)
dv = !x(t)dt = dx
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First-Order Variations
First variations in a quantity 
induced by control variations

!(.) = " (.)
"u

!u+ " (.)
"x

!x(!u)+ " (.)
"##

!##(!u)

= " (.)
"u

!u+ " (.)
"x

!x(!u)+ " (.)
"##

0( )

(The adjoint vector is a function of time alone)

!(.) = "(.)
"u

!u + "(.)
"x

!x(!u)
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Stationarity of the 
Cost Function

Three, independent, necessary conditions for 
stationarity (Euler-Lagrange equations)

Cost  must be insensitive to small variations in 
control policy along the optimal trajectory

 

!J*= "#
" x

$ %%T&
'(

)
*+

,
-
.

/
0
1
!x(!u)

t=t f

+ %%T!x(!u)&' )* t=t0
+ "H

"u
!u+ "H

"x
+ !%%T&

'(
)
*+
!x(!u),

-
.

/
0
1t0

t f

2 dt = 0

3 !J(t f )+ !J(t0 )+ !J(t0 4 t f )

First variation of the cost function due to control

!J* = 0
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First-Order Insensitivity 
to Control Perturbations

1) !"
!x

# $$T%
&'

(
)* t= t f

= 0

 

!x 0( ) = f x 0( ),u 0( )!" #$  need not be zero, but

x 0( )  cannot change instantaneously unless control is infinite

% &x &u( )!" #$ t=t0 ' 0,  so &J t=0 = 0

 
2) !H

!x
+ !""T#

$%
&
'(
= 0 in t0 ,t f( )

Individual terms of  !J *  must remain zero for arbitrary variations in !u t( )

3) !H
!u

= 0 in t0 ,t f( )
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Euler-Lagrange 
Equations!
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Euler-Lagrange Equations

1)) !!(t f ) =
"#[x(t f )]

"x
$
%
&

'
(
)

T

 

Jacobian matrices

F(t) ! ! f
!x

t( )

G(t) ! ! f
!u

t( )
 

2)) !!!(t) = " #H[x(t),u(t),!!(t),t]
#x

$
%
&

'
(
)

T

= " # L
#x

+ !!T t( )# f
#x

*
+,

-
./

T

" " Lx (t)+ !!T t( )F(t)*+ -.
T

 
3) !H[x(t),u(t),""(t),t]

!u
= ! L

!u
+ ""T t( ) ! f

!u
#
$%

&
'(
! Lu(t)+ ""T t( )G(t)#$ &' = 0

Ordinary differential equation for adjoint vector

Boundary condition for adjoint vector

Optimality condition
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Jacobian Matrices!
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Jacobian Matrices Express Solution 
Sensitivity to Small Perturbations

Stability matrix

 

F(t) = ! f
!x x=xN (t )

u=uN (t )
w=wN (t )

=

! f1
! x1

!
! f1
! xn

! ! !
! fn
! x1

!
! fn
! xn

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'x=xN (t )
u=uN (t )
w=wN (t )

dim(F) = n ! n
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G(t) = ! f
!u x=xN (t )

u=uN (t )
w=wN (t )

=

! f1
!u1

!
! f1
!um

! ! !
! fn
!u1

!
! fn
!um

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'x=xN (t )
u=uN (t )
w=wN (t )dim(G) = n ! m

Control effect matrix



Jacobian Matrix Example

F t( ) =
0 1 0

!2a1 x3N t( )! x1N t( )"# $% !a2 a2 + 2a1 x3N t( )! x1N t( )"# $%

c1 + b3u1N t( )"# $% c1 3c2x3N
2 t( )

"

#

&
&
&
&
&

$

%

'
'
'
'
'

Jacobian matrices are time-varying in the example

Original nonlinear equation describes nominal dynamics

G t( ) =
0 0
b1 b2

b3x1N t( ) 0

!

"

#
#
#

$

%

&
&
&

 

!xN t( ) =
!x1N t( )
!x2N t( )
!x3N t( )

!

"

#
#
#
#

$

%

&
&
&
&

=

x2N t( )
a2 x3N t( )' x2N t( )!" $% + a1 x3N t( )' x1N t( )!" $%

2
+ b1u1N t( )

c2x3N t( )3 + c1 x1N t( ) + x2N t( )!" $% + b3x1N t( )u1N t( )
+ b2u2N t( )

!

"

#
#
#
#
#

$

%

&
&
&
&
&
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Dynamic Optimization is 
a Two-Point Boundary 

Value Problem

Boundary condition for the state equation is specified at t0

 !x(t) = f[x(t),u(t)] , x(t0 ) given

Boundary condition for the adjoint equation is specified at tf

 

!!!(t) = "
#L
#x

t( ) + !!T t( ) #f
#x

t( )$
%&

'
()

T

, !!(t f ) =
#*[x(t f )]

#x
+
,
-

.
/
0

T
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Sample Two-Point Boundary Value Problem!
Move Cart 100 Meters in 10 Seconds

 

!x1
!x2

!

"
#
#

$

%
&
&
=

x2
u

!

"
#
#

$

%
&
&
; L = ru2; ' = q x1 f (100( )2

•! Cost function: tradeoff between
–! Terminal error squared
–! Integral cost of control squared

x1
x2

!

"
#
#

$

%
&
&
= Position

Velocity
!

"
#
#

$

%
&
&

H x,u,!![ ] = L x,u[ ]+ !!T f x,u[ ]

= ru2 + !1 !2"
#

$
%

x2 (t)
u(t)

"

#
&
&

$

%
'
'

J = q x1 f !100( )2 + ru2 dt
t0

t f

"
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Closed-Form Solution 
for Adjoint Vector

 

!!!(t) = " #H
#x

$
%
&

'
(
)

T

= " # L
#x

+ !!T # f
#x

*
+,

-
./

T

= " 0 + !1 !2( ) 0 1
0 0

0
12

3
45

*

+
,

-

.
/

T

!!(t f ) =
#6[x(t f )]

#x
$
%
&

'
(
)

T

= 2q x1 f "100( ) 0*
+,

-
./

T

!1(t)
!2 (t)

"

#
$
$

%

&
'
'
=

!1(t f )

!1(t f ) t f ( t( )
"

#

$
$

%

&

'
'
=

2q x1 f (100( )
2q x1 f (100( ) t f ( t( )

"

#

$
$
$

%

&

'
'
'

 

!!1
!!2

"

#

$
$

%

&

'
'
= (

0
!1

"

#
$
$

%

&
'
'
;

!1
!2

"

#
$
$

%

&
'
'
t= t f

= 2q x1 f (100( )
0

"

#

$
$

%

&

'
'
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Closed-Form Solution for 
Control History

!H
!u

"
#$

%
&'
T

=
!L
!u

"
#$

%
&'
T

+
!f
!u

"
#$

%
&'
T

(( t( ))

*
+
+

,

-
.
.
= 0

2ru(t) + 0 1( )
2q x1 f !100( )

2q x1 f !100( ) t f ! t( )

"

#

$
$
$

%

&

'
'
'
= 0

Optimality condition

Optimal control strategy

 
u(t) = ! q

r
"
#$

%
&' x1 f !100( ) t f ! t( ) ! k1 + k2t
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Cost Weighting Effects on 
Optimal Solution

 
u(t) = ! q

r
"
#$

%
&' x1 f !100( ) t f ! t( ) ! k1 + k2tx(t) = x(t0 ) + f[x(t),u(t)]dt, t0 ! t f

t0

t

"

x1(t)
x2 (t)

#

$
%
%

&

'
(
(
=

k1t
2 2 + k2t

3 6

k1t + k2t
2 2

#

$
%
%

&

'
(
(

For t = 10s, x1 f
= 100

1+ 0.003 r
q

!
"#

$
%&
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Iterate to Find Optimal Trajectory for 
More  Complex Problems

Calculate x(t) using prior estimate of u(t) , 
i.e., starting guess

x(t) = x(t0 ) + f[x(t),u(t)]dt, t0 ! t f
t0

t

"

!!(t) = !!(t f )"
# L x t( ),u t( )$% &'

#x
+ !!T t( )# f x t( ),u t( )$% &'

#x
$

%
(

&

'
)

T

dt
t f

t

* , t f + t0

Calculate adjoint vector using prior estimate of x(t) and u(t)
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Evaluate Lagrangian in [t0, tf]

L x t( ),u t( )!" #$, in t0,t f( )

Typical Iteration to Find 
Optimal Trajectory

Calculate H(t) and "H/"u using prior estimates 
of state, control, and adjoint vector

H x(t),u(t),!!(t)[ ] = L x(t),u(t)[ ]+ !!T (t)f x(t),u(t)[ ]
"H
"u

= " L
"u

+ !!T t( ) " f
"u

#
$%

&
'(
, in t0,t f( )

Estimate new u(t)

unew (t) = uold (t)+ !u "H (t)
"u

#
$
%

&
'
(

, in t0,t f( )
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Alternative Necessary 
Condition for Time-
Invariant Problem!
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Time-Invariant Optimization Problem
Time-invariant problem: Neither L nor 

f is explicitly dependent on time

H x(t),u(t),!!(t),t[ ] = L x(t),u(t)[ ]+ !!T (t)f x(t),u(t)[ ]
= H x(t),u(t),!!(t)[ ]

 !x(t) = f[x(t),u(t),p(t),t] = f[x(t),u(t),p]

L x(t),u(t),t[ ] = L x(t),u(t)[ ]
Then, the Hamiltonian is
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Time-Rate-of-Change of the 
Hamiltonian for Time-Invariant System
dH[x(t),u(t),!!(t)]

dt
=
"H
"t

+
"H
"x

"x
"t

+
"H
"u

"u
"t

+
"H
"!!

"!!
"t

 

dH
dt

= Lx (t)+ !!T t( )F(t)"# $% !x + Lu(t)+ !!T t( )G(t)"# $% !u+ f T"# $%
!!!

 

dH
dt

= Lx (t)+ !!T t( )F(t)( ) + !!!""#$ %& !x + Lu(t)+ !!T t( )G(t)#$ %& !u

= 0[ ] !x + 0[ ] !u = 0 on optimal trajectory

from Euler-Lagrange Equations #2 and #3
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H is independent of time

Hamiltonian is Constant on the 
Optimal Trajectory

dH
dt

= 0 ! H*=  constant on optimal trajectory

For time-invariant system dynamics and Lagrangian

H* = constant is an alternative scalar 
necessary condition for optimality
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Open-End-Time 
Optimization Problem!

39

Open End-Time Problem
Final time, tf, is free to vary

 
J = ! x(t f )"# $% + H x(t),u(t),&&(t)[ ]' &&T (t)!x(t){ }

t0

t f

( dt

tf is an additional control variable for minimizing J

!J = !J(t f )+ !J(t0 )+ !J(t0 " t f )

!J(t f ) = !J(t f ) fixed t f +
dJ
dt t=t f

!t f

Goal: tf for which sensitivity to perturbation in final time is zero

Final Time

Cost

40



Additional Necessary 
Condition for Open 
End-Time Problem

Cost sensitivity to final time should be zero

!" *
!t

= #H *  at t = t f   for open end time

Final Time

Cost

Additional necessary condition
 

dJ
dt t=t f

= !"
! t

+ !"
!x
!x#

$%
&
'(
+ H ) **T !x#$ &'

+
,
-

.
/
0 t=t f

= !"
! t

+ H#
$%

&
'(
+ **T !x ) **T !x#$ &'

+
,
-

.
/
0 t=t f

= !"
! t

+ H#
$
%

&
'
( t=t f

= 0

41

Optimal Rendezvous Requires 
Phasing of the Maneuver 

International Space Station is a moving target
Transfer orbit time equals target’s time to reach 

rendezvous point

42Sellers, 2005

! xshuttle t f( )"# $% =
1
2
xshuttle t f( )& x ISS t f( )"# $%

T
P xshuttle t f( )& x ISS t f( )"# $%



H* = 0 with Open End-Time and 
Time-Independent Terminal Cost

If terminal cost is independent of time, and 
final time is open

dJ
dt t= t f

=
!"
!t

+ H#
$
%

&
'
( t= t f

= 0( ) + H{ }
t= t f

= 0

!H * t f( ) = 0
43

Hamiltonian at final time:

Hamiltonian for Time-Invariant System, 
Terminal Cost, and Open End Time

Time-invariant 
system

H*= 0 in t0,t f!" #$

dH
dt

= 0 !

H*=  constant  in t0,t f"# $%

44

H * t f( ) = 0

Open end time !" *
! t

t f( ) = #H * t f( )
Time-

independent 
terminal cost

Therefore



Sufficient Conditions 
for a Minimum!
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Sufficient Conditions for 
a Local Minimum

•! Euler-Lagrange equations are satisfied 
(necessary conditions for stationarity), 
plus proof of
–! Convexity
–! Controllability <--> Normality
–! Uniqueness

•! Singular optimal control
•! Higher-order conditions
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Strengthened  condition
! 2H x*,u*,"" *( )

!u2 > 0 in t0 ,t f( ) Positive definite (m x m) 
Hessian matrix 

throughout trajectory

Weakened  condition
! 2H x*,u*,"" *( )

!u2 # 0 in t0 ,t f( )
Hessian may 
equal zero at 

isolated points

Convexity !
Legendre-Clebsch Condition

47

Normality and!
Controllability

•! Normality: Existence of 
neighboring-optimal solutions
–! Neighboring vs. neighboring-

optimal trajectories
•! Controllability: Ability to satisfy 

a terminal equality constraint
•! Legendre-Clebsch condition 

satisfied

48



Neighboring vs. Neighboring-
Optimal Trajectories

•! Nominal (or reference) trajectory and control history

xN (t), uN (t){ } for t in t0,t f( )
•! Neighboring trajectory

–! Small initial condition variation
–! Small control variation

x(t) = xN (t)+ !x(t)
u(t) = uN (t)+ !u(t)

49

Both Paths Satisfy the 
Dynamic Equations

Alternative notation
 

!xN (t) = f[xN (t),uN (t)], xN t0( )   given

!x(t) = f[x(t),u(t)], x t0( )   given

 

!xN (t) = f[xN (t),uN (t)]
!x(t) = !xN (t)+ !!x(t) = f[xN (t)+ !x(t),uN (t)+ !u(t)]

 

!x(t0 ) = x(t0 )" xN (t0 )
!x(t) = x(t)" xN (t)
!!x(t) = !x(t)" !xN (t)

!u(t) = u(t) " uN (t)
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Neighboring-Optimal Trajectories
xN*(t) is an optimal solution to a cost function

 

!xN *(t) = f[xN *(t),uN *(t)], xN t0( )   given

JN*= ! xN *(t f )"# $% + L xN *(t),uN *(t)[ ]
t0

t f

& dt

 

!x*(t) = f[x*(t),u*(t)], x t0( )   given

J*= ! x*(t f )"# $% + L x*(t),u*(t)[ ]
t0

t f

& dt

If x*(t) is an optimal solution to the same cost function

Then xN* and x* are neighboring-optimal trajectories 
51

Uniqueness !
Jacobi Condition

1)# Finite state perturbation implies 
finite control perturbation

Conjugate 
Point at 
North Pole

!x(t) < "{ }# !u(t) < "{ }

52

Example: Minimum distance from 
the north pole to the equator

2)# No conjugate points (~focal points)



Next Time:!
Principles for Optimal Control, 

Part 2!
!

Reading:!
OCE: pp. 222-231!
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!"##$%&%'()$*+)(%,-)$*
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Effects of Control Weighting in 
Optimal Control of LTI System

min
u
J = xT (t)Qx(t)+ ru2 (t)!" #$

0

T

% dt, Q, r > 0

Q = 1 0
0 1

!

"
#

$

%
&

r = 1 or 100
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dx t( )
dt

= Fx(t)+Gu(t)

F = 0 1
!a b

"

#
$

%

&
', a,b > 0  [unstable]

G = 0
a

"

#
$

%

&
'

x =
x1, displacement

x2, rate

!

"
#
#

$

%
&
&

Example

Effects of Control Weighting in Optimal 
Control of Unstable LTI System

•! Optimal feedback 
control (TBD) 
stabilizes unstable 
system response 
to initial condition
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•! Smaller control 
weight 

–! Allows larger 
control 
response

–! Decreases state 
variation

•! Larger control 
weight conserves 
control energy

dx
dt

= Fx +Guoptimal

= Fx !GCx = F !GC( )x



Open-Loop and Optimal Closed-
Loop Response to Disturbance

Q = 100 0
0 100

!

"
#

$

%
&

R = 1

Stable 2nd-order linear dynamic system: dx(t)/dt = Fx(t) + Gu(t) + Lw(t)
Optimal feedback control (TBD) reduces response to disturbances

Time Response Phase-Plane Plot
(Rate vs. Displacement)
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Time-Invariant Example with Scalar Control!
Cart on a Track

H x,u,!![ ] = ru(t)2 + 2q x1 f "100( ) 2q x1 f "100( ) t f " t( )#
$%

&
'(

x2 (t)
u(t)

#

$
%
%

&

'
(
(

ru(t)2 + 2q x1 f
!100( ) t f ! t( )u(t) + 2q x1 f

!100( )x2 (t) =  Constant TBD( )

H x,u,!![ ] = L x,u[ ]+ !!T f x,u[ ] =  Constant

= ru(t)2 + !1(t) !2 (t)"
#

$
%

x2 (t)
u(t)

"

#
&
&

$

%
'
'

= ru(t)2 + !1(t)x2 (t)+ !1(t) t f ( t( )u(t) =  Constant
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Cart on a Track with Scalar Control 
and Open End Time

H* = ru(t)2 + !1(t)x2 (t) + !1(t) t f " t( )u(t) = 0
•! Fixed end-time 

results (tf = 10 s)
•! Open end-time 

would be 
important only if 
q/r is small
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Examples of  Open 
End-Time Problems

•! Minimize elapsed time to achieve an 
objective

•! Minimize fuel to go from one place to 
another

•! Achieve final objective using a fixed 
amount of energy
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