Redes Neurais (Deep Learning) : modelos generativos

Ref.: MIT — Introduction to Deep Learning



A estrutura matematica das redes neurais

Input Layer x
Output Layer y

Figure 6.1 Illustration of a neural net architecture mapping an input layer x to an output layer y. The
middle (hidden) layers are denoted x) where J determines their sequential ordering. The matrices
A j contain the coefficients that map each variable from one layer to the next. Although the
dimensionality of the input layer x € R” is known, there is great flexibility in choosing the
dimension of the inner layers as well as how to structure the output layer. The number of layers and
how to map between layers is also selected by the user. This flexible architecture gives great
freedom in building a good classifier.



Modelos Generativos — caracteristicas gerais

* Aprendizado nao supervisionado

* Aprender distribuicao de probabilidade intrinseca ao conjunto de
dados

e Geracao de novos dados

* Muita coisa associada a aprendizado probabilistico



|deia central... Estrutura intrinseca (nao
conhecida — hidden) envolvendo os dados

Latent variable models
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Autoencoders and Variational Generative Adversarial
Autoencoders (VAEs) Networks (GANs)
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Como “descobrir” guem sao as variaveis
latentes?

* Modelos reduzidos : POD (aproximacao linear)

 Autoencoders
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Como treinar um autoencoder?
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L(x,®) = ||x — %||? Loss function doesn't
use any labels!!




Variational Autoencoders
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Variational autoencoders are a probabilistic twist on autoencoders!
Sample from the mean and standard deviation to compute latent sample
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Encoder computes: (4, (le ) Decoder computes: Pg (XlZ)



Generative Adversarial Networks (GANSs)

Generative Adversarial Networks (GANs) are a way to make a generative
model by having two neural networks compete with each other.
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The discriminator tries to identify real
data from fakes created by the generator.

The generator turns noise into an imitation
of the data to try to trick the discriminator.




Treinando GANS
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G tries to synthesize fake
images that fool the best D

arg min max “3z,x[ log D(G(2))+log (1 — D(x)) |
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Gerando novas amostras com GANSs

(Gaussian noise
z~N(0,1)

Trained Learned target
generator data distribution



Conditional GANs
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Wind Field, Turbine Dynamic Response and Fatigue Assessment

» The wind flow has a complex structure that evolves in time and lN‘
space, containing various frequencies and magnitudes. ]

» Spatial-time flow characterization is unavailable since turbine sensors
measure the wind speed at specific points, and these systems provide 10
minutes summary statistics.

» Simplified wind flow models, such as the one used in TurbSim?, deliver a
cost-benefit solution for representing the flow. It generates wind speed in

a specific time interval (10 minutes) at any point inside the turbine plane.

» It utilizes summary statistic inputs provided by wind turbine sensors.

Figure: Example of TurbSim flow.?



Determine the simulation

domain based on site
measurements or general . ‘

global wind conditions.

Sample one Input (Wind Condition): ]
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Machine Learning Surrogate Model
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» The flow model and the aero-servo-elastic simulations are time
consuming for a real-time application or a multiple scenario
assessment. A Machine Learning algorithm can reduce the
computation cost.

» The simulation outcomes provide an empirical and unknown joint
distribution q(x, y), which converges to the true one p(x,y) as long
as the data set increases. x is the input vector containing the wind
speed, turbulence intensity and lubricant condition (ws, ti, Ic). y is
the accumulated bearing damage in 10 minutes.

» As there are uncertainties in the wind speed time series since we
generate them considering only summary statistics as inputs such as
the mean wind speed and the turbulence intensity. Many flows with
different random seeds are generated for each input.

» Therefore, the ML model must learn the stochastic relation between
input and output, i.e., g(y|x = X;), where X; is the training points
and estimate damage values out of the the training data set.



Conditional Deep Surrogate Model®
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» The chosen ML model is a type of Generative Adversarial Netwo ”202
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Figure: Generative model training process.

5Yang. Y., Perdikaris, P., Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems. Comput Mech
64, 417434 (2019). https://doi.org/10.1007 /s00466-019-01718-y.



Application 2 DINA
2

» In the second application, we implement the surrogate model to
assess the daily accumulated bearing fatigue damage.

» We use standard SCADA data considering measurement
uncertainties.
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(b) One day accumulated bearing
damage, considering uncertainties in

(a) One day wind speed time series SCADA measurements. Processing time:
(SCADA data). (17 minutes).
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Construction of predictive coarse-graining machine learning
models with Gaussian Processes and Conditional Probability
learning for diesel /biodiesel surrogate fuels

May 30, 2023, Rio de Janeiro



Background

@ High-fidelity computer models are prone to accelerate the process of designing and
deploying complex engineered systems like engines with improved performance and
less emission

@ Such models result from the combination of basic scientific principles (e.g. balance
of linear momentum) with closure equations

e Closure equations connect state variables to thermophysical properties (e.g.,
viscosity and surface tension).

e Due to its own nature, such closures represent, frequently, the weak link chain in the
modelling



Motivation i COPPE

: UFRJ
@ Thermophysical properties of practical fuels are important but difficult to measure/predlct

especially when complex surrogate fuels and extreme conditions (such as supercritical) are
concerned

@ Molecular Dynamics is a common approach to characterize the physical properties of
practical fuels. Also, coarse-graining models build simplified representations that allow
keeping the main chemical/physical characteristics and performing affordable and
meaningful simulations

@ Machine learning has great potential to discover from data the relation between inputs and
outputs in a thermodynamic system

@ Also, machine learning techniques have been widely used to model closure relations in
many practical problems ! 2. Furthermore, these approaches can be adapted to
accommodate multi-fidelity data in the learning process

Construct cheap-to-compute machine learning models to act as an closure equations
for predicting the physical properties of diesel/biodiesel surrogate fuels
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@ Surrogate fuels: C,H2,.2

e Dataset:1200 points of p(n,p, T), T € [320,900K] varying by 20 K and
p=[3,4,6,8,10,20,100, 150] MPa
o Octane (C8H18), Nonane (C9H20), Decane (C10H22), Dodecane (C12H24) and
Hexadecane (C16H34)

@ 80% of the data to training: (D; = 10%, D> = 50%, D3 = 80%)

@ 20% of the data to testing
e Input: n,p, T and Output: p(n,p, T)

e nis a integer, but it is assumed to be a continuously variable since a Gaussian process
is the joint distribution of the random variables over a continuous domain

Gaussian Process

Matern32: k(r) = 0’2(1 + \/§r)exp (_\/§r) . where r = Z (
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Generative Model
@ Decoder - 4 hidden layers with 100 neurons
@ Encoder - 4 hidden layers with 100 neurons

@ Discriminator - 2 hidden layers with 100 neurons
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Hexadecane predictions with the Gaussian process surrogate model (top) and Conditional
generative surrogate model (bottom) at the pressures 3, 10, and 100 MPa.
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Heptane predictions with the Gaussian process surrogate model (top) and Conditional generative surrogate model (bottom) at the
pressures 3, 10, and 100 MPa. The L2 mean relative error to the density predicted by MD simulation at 3, 10 and 100 MPa are

(GP, GM) = (1.1364 x 10~1,2.5697 x 10™1), (GP, GM) = (1.9166 x 104

(GP, GM) = (4.9254 x 10~ *,5.5123 x 10—%), respectively

,1.3294 x 10— *4) and



