
CDS 101/110a: Lecture 4.1 
 State Feedback

Richard M. Murray 
19 October 2015 

Goals: 
• Introduce control design concepts and classical “design patterns” 
• Describe the design of state feedback controllers for linear systems 
• Define reachability of a control system and give tests for reachability 

Reading:  
• Åström and Murray, Feedback Systems 2e, Ch 7
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“Classical” control (1950s...) 

• Goal: output y(t) should track reference trajectory r(t) 

• Design typically done in “frequency domain” (second half of CDS 101/110a) 

“Modern” (state space) control (1970s...) 

• Goal unchanged: output y(t) should track reference trajectory r(t) [often constant]

Design Patterns for Control Systems
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• Reference input shaping 
• Feedback on output error 
• Compensator dynamics 

shape closed loop response 
• Uncertainty in process 

dynamics P(s) + external 
disturbances (d) & noise (n)

• Assume dynamics are given 
by linear system, with known 
A, B, C matrices 
• Measure the state of the 

system and use this to 
modify the input 
• u = -K x + kr r

ẋ = Ax+Bu

y = Cx
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System description: single input, single output system (MIMO also OK) 

Stability: stabilize the system around an equilibrium point 
• Given equilibrium point              , find control “law” u = α(x)  

such that 

• Often choose xe so that ye = h(xe) has desired value r (constant) 

Reachability: steer the system between two points 
• Given                   , find an input u(t) such that 

Tracking: track a given output trajectory 

• Given r = yd(t), find u = α(x,t) such that
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State Space Control Design Concepts

x0

xf

y(t)

tyd(t)

ẋ = f(x, u(t)) takes x(t0) = x0 � x(T ) = xf

xe � Rn

xo, xf � Rn

x 2 Rn, x(0) given

u 2 R, y 2 R

lim

t!1
x(t) = xe for all x(0) 2 Rn

lim

t!1

�
y(t)� yd(t)

�
= 0 for all x(0) 2 Rn

ẋ = f(x, u)

y = h(x)
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Defn  An input/output system is reachable if for any  
                   and any time T > 0 there exists an input 
                 such that the solution of the dynamics starting  
from x(0) = x0 and applying input u(t) gives x(T) = xf . 

Remarks 
• In the definition, x0 and xf  do not have to be equilibrium points ⇒ we don’t necessarily 

stay at xf  after time T. 

• Reachability is defined in terms of states ⇒ doesn’t depend on output 

• For linear systems, can characterize reachability by looking at the general solution: 
 
 

• If integral is “surjective” (as a linear operator), then we can find an input to achieve 
any desired final state.
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Reachability of Input/Output Systems

xo, xf � Rn

u[0,T ] � R

x0

xf

ẋ = f(x, u)

y = h(x)

ẋ = Ax+Bu

y = Cx

Note: the term “controllable”  
is also commonly used to  

describe this concept
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Tests for Reachability

Thm  A linear system is reachable if and only if the n × n reachability matrix 

is full rank. 

Remarks 
• Very simple test to apply.  In MATLAB, use ctrb(A,B) and check rank w/ det() 

• If this test is satisfied, we say “the pair (A,B) is reachable” 
• Some insight into the proof can be seen by expanding the matrix exponential

Note: also called  
“controllability” matrix

ẋ = Ax+Bu

y = Cx
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Example #1: Linearized pendulum on a cart
Question: can we locally control the position of the cart by 
proper choice of input? 
• Simple case: move from one equilibrium point to another 
• More generally: hit arbitrary position, angle and velocities 

(but near equilibrium point) 

Approach: look at the linearization around upright position 
(good approximation to the full dynamics if θ remains small)
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• Full rank as long as constants are such that 
columns 1 and 3 are not multiples of each other 

• ⇒ reachable as long as 

• ⇒ can “steer” (linearization) between any two 
points by proper choice of input

det(Wr) =
g2l4m4

µ4
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0

0

0
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• Simplify by  
setting c, γ = 0 

• Define
µ = MtJt �m2l2
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Given that a (linear) system is reachable, how do we compute the inputs?? 
• Method #1: formulate as an “optimal control problem” and solve numerically 

• Method #2: create a stabilizing control law to an equilibrium point: u = ue + α(x-xe) 

• These methods only work if the system is reachable and almost always require that 
the linearization at a nearby equilibrium point be reachable (which we can check) 

Given feasible input/state trajectory, use feedback to manage uncertainty 
• General picture = trajectory generation (feedforward) + feedback compensation

Trajectory Generation (and Tracking)
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min
u(·)

Z T

0
L(x, u) dt subject to ẋ = f(x, u), x(0) = x0, x(T ) = xf

lim

t!1
x(t) = xe for all x(0) 2 Rn =) x(0) = x0 ! x(1) = xe

Environment

Types of uncertainty: 
• Process disturbances 

• Sensor noise 

• Unmodeled dynamics

More on trajectory 
generation in CDS 112
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System description: single input, single output system (MIMO also OK) 

Stability: stabilize the system around an equilibrium point 
• Given equilibrium point              , find control “law” u=α(x)  

such that 

Reachability: steer the system between two points 
• Given                   , find an input u(t) such that 

Tracking: track a given output trajectory 

• Given yd(t), find u=α(x,t) such that
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Control Design Concepts

x0

xf

y(t)

tyd(t)

ẋ = f(x, u(t)) takes x(t0) = x0 � x(T ) = xf

xe � Rn

xo, xf � Rn

ẋ = f(x, u)

y = h(x, u)

x 2 Rn, x(0) given

u 2 R, y 2 R

lim

t!1
x(t) = xe for all x(0) 2 Rn

lim

t!1

�
y(t)� yd(t)

�
= 0 for all x(0) 2 Rn

!
ẋ = Ax+Bu
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State space controller design for linear systems

Goal: find a linear control law u = -K x + kr r  
such that the closed loop system 

is stable at equilibrium point xe with ye = r. 

Remarks 
• If r = 0, control law simplifies to u = -K x and system becomes 

• Stability based on eigenvalues ⇒ use K to make eigenvalues of (A - BK) stable 

• Can also link eigenvalues to performance (eg, initial condition response) 
• Question: when can we place the eigenvalues anyplace that we want? 

Theorem The eigenvalues of (A - BK) can be set to arbitrary values if and only if the 
pair (A, B) is reachable. 

MATLAB/Python: K = place(A, B, eigs) 

ẋ = Ax+Bu = (A�BK)x+Bkrr

ẋ = (A�BK)x

ẋ = Ax+Bu

y = Cx

Python users: use python-control toolbox  
(available at python-control.org)
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System dynamics 

• Stable limit cycle with unstable equilibrium point 
at He = 20.6, Le = 29.5 

• Can we design the dynamics of the system by 
modulating the food supply (“u” in “r + u” term) 

Q1: can we move from some initial population  
of foxes and rabbits to a specified one in time  
T by modulation of the food supply? 
• Eg: need large amount of food for 1872 Olympics 

Q2: can we stabilize the lynx population around 
a desired equilibrium point (eg, Ld = ~30)? 
• Try to keep lynx and hare population in check 

Approach: try to stabilize using state feedback law 

Example #2: Predator prey
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Equilibrium point calculation 

• xe = (20.6, 29.5), ue = 0, Le = 29.5 

Linearization 
• Compute linearization around equilibrium point, xe: 

• Redefine local variables:  z = x - xe, v = u - ue 

• Reachable?  YES, if a, b ≠ 0 (check [B AB]) ⇒ can locally steer to any point
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Example #2: Problem setup

dH

dt
= (r + u)H

✓
1� H

k

◆
� aHL

c+H

dL

dt
= b

aHL

c+H
� dL

d

dt
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z1
z2

�
=

"
� acLe

(c+He)2
� 2Her

k + r � aHe
c+He

abcLe
(c+He)2

abHe
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� d

#
.


z1
z2

�
+

"
He

�
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k

�

0

#
v

f = inline('predprey(0, x)', 'x');
xeq = fsolve(f, [20, 30])'; He = xeq(1); Le = xeq(2);

% Generate the linearization around the eq point
App = [
  -((a*c*k*Le + (c + He)^2*(2*He - k)*r)/((c + He)^2*k)), -((a*He)/(c + He));
  (a*b*c*Le)/(c + He)^2, -d + (a*b*He)/(c + He)
];
Bpp = [He*(1 - He/k); 0];

% Check reachability
if (det(ctrb(App, Bpp)) ~= 0) disp “reachable”; end

dx

dt

⇡ A(x� xe) +B(u� ue) +
higher

order terms
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% Assign the desired eigenvalues for the system
Kpp = place(App, Bpp, [-0.1; -0.2]);

% Initial condition and simulation time
x0 = [15, 20];
Tmax = 100;

% Generate a simulation of the system
figure(1); clf; subplot(221);
[t, x] = ode45('predprey', [0 Tmax], x0, [], -r, d, b, k, a, c)
plot(t, x(:,1), '-', t, x(:,2), '--');
xlabel('Time (years)');
ylabel( 'Population', 'Rotation', 90);0 50 100
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Control design: 

Place poles at stable values 
• Choose λ = -0.1, -0.2 
• MATLAB: Kpp = place(App, Bpp, [-0.1; -0.2]); 

Key principle: design of dynamics 
• Use feedback to create a stable equilibrium point 

More advanced: control to desired value r = Ld 
(Wed)
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Example #2: Stabilization via eigenvalue assignment

v = �Kz = �k1(H �He)� k2(L� Le)

u = ue +K(x� xe) + kr(r � ye)
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Implementation Details
Eigenvalues determine performance 

• For each eigenvalue λi=σi + jωi, get  
a contribution of the form 

• Repeated eigenvalues can give addi- 
tional terms of the form tk eσ + jω ⇒ be careful 

Use observer to determine the current state if you can’t measure it 

" Next week: basic theory of state estimation and observability 
" CDS 110b: Kalman filtering = theory of optimal observers (and basis for particle filters, ...)

" Estimator looks at inputs and 
outputs of plant and estimates 
the current state 

" Can show that if a system is 
observable then you can 
construct and estimator 

" Use the estimated state as the 
feedback
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Summary: Reachability and State Space Feedback

Key concepts 
• Reachability: find u 

s.t. x0 → xf 

• Reachability rank 
test for linear 
systems 

• State feedback to 
assign eigen-
values

x0

xf

u = �Kx + krr
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ẋ = Ax+Bu

y = Cx


