CDS 101/110a: Lecture 4.1
State Feedback

Richard M. Murray
19 October 2015

Goals:
* Introduce control design concepts and classical “design patterns”
* Describe the design of state feedback controllers for linear systems
* Define reachability of a control system and give tests for reachability

Reading:
e Astrém and Murray, Feedback Systems 2e, Ch 7

Design Patterns for Control Systems

“Classical” control (1950s...) ,
¢ Reference input shaping

e Feedback on output error

e Compensator dynamics
shape closed loop response

e Uncertainty in process
dynamics P(s) + external
disturbances (d) & noise (n)

e Goal: output y(¢) should track reference trajectory r(¢)
e Design typically done in “frequency domain” (second half of CDS 101/110a)

“Modern” (state space) control (1970s...)
e Assume dynamics are given

Controller ‘ Process by linear system, with known

A A, B, C matrices
P k()3 T T Av+Bul  _ y  « Measure the state of the
y=Cz system and use this to
! modify the input
—K = . eu=-Kx+kr

e Goal unchanged: output y(¢) should track reference trajectory r(¢) [often constant]
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State Space Control Design Concepts

System description: single input, single output system (MIMO also OK)

i=f(z,u) = €R" 2(0) given
y = h(z) ueR, yelR

Stability: stabilize the system around an equilibrium point
e Given equilibrium point z. € R™ | find control “law” u = a/(x)
such that
lim z(t) = z, for all z(0) € R"™

t—o0

e Often choose x. so that y. = i(x.) has desired value r (constant)

Reachability: steer the system between two points
® Given z,,zy € R" find an input u(¢) such that

& = f(z,u(t)) takes z(ty) = xo — =(T) = xy

Tracking: track a given output trajectory

e Given r = (1), find u = a(x,7) such that ()
tlggo(y(t) — ya(t)) = 0for all z(0) € R" )
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Reachability of Input/Output Systems

&= f(z,u) x€R" x(0) given Xy
y = h(x) u€eR, yeR \ /xfg
Nl

Defn An input/output system is reachable if for any
Zo, x5 € R™and any time 7> 0 there exists an input

upo, 7] € R such that the solution of the dynamics starting Note: the term “controllable”

from x(0) = x, and applying input u(¢) gives x(7) = x. is also commonly used to
©) 0 ppyIng Inp 0g &) ! describe this concept

Remarks
e In the definition, x,and x, do not have to be equilibrium points = we don’t necessarily
stay at x, after time T.

e Reachability is defined in terms of states = doesn’t depend on output
® For linear systems, can characterize reachability by looking at the general solution:
T

T = Ax + Bu AT A(T=t)
Y= Ca x(T)=e""x, + fe Bu(t)dr
=0

If integral is “surjective” (as a linear operator), then we can find an input to achieve
@~ any desired final state.
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Tests for Reachability

t=Ax+ Bu x € R"™ z(0) given

T
x(T)=e""x,+ [ """ Buf)dx
y=Cx u€eR, yeR r'[o

Thm Alinear system is reachable if and only if the n x n reachability matrix

[B AB A2B ... An—lB}
Note: also called
is full rank. “controllability” matrix

Remarks
e Very simple test to apply. In MATLAB, use ctrb(A,B) and check rank w/ det()
e [f this test is satisfied, we say “the pair (A,B) is reachable”
e Some insight into the proof can be seen by expanding the matrix exponential

AT-Ip = (z+ AT =) 22T = )2 — ATyl g ) B
2 (n—1)!
= B+ AB(T-1) +1AQB(T—T)2+-..+ 1 AVIB(T — )4
2 (n—1)!
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Example #1: Linearized pendulum on a cart

Question: can we locally control the position of the cart by
proper choice of input?
e Simple case: move from one equilibrium point to another

e More generally: hit arbitrary position, angle and velocities
(but near equilibrium point)

F
I—O—Q’—C}—' Approach: look at the linearization around upright position
— (good approximation to the full dynamics if 6 remains small)
p |
0 0 1 0 0 + Simplify by
p g 0 0 0 1 g 0 setting ¢, y =0
— 1.1 =10 m2i2g e il | J w ° Define -
dt |p M J;—m212 M LZm22 M, J~m?1Z | |P M, J,—mZ212 = M.J, —m?l
g Mymgl fcMO —WM'/O 0 __Im
M J,—m212 M FH—m22  MyJ—m?2[? My Jy—m?21?
0 L 0 9127;3 * Full rank as long as constants are such that
i 0 o2 (ms M) columns 1 and 3 are not multiples of each other
woo |0 o G2 lAmA
r L gzZT3 0 « = reachable as long as det(W,.) = " #0
m g glm’(miM) 0 « = can “steer” (linearization) between any two
" iz . . .
oints by proper choice of input
B AB  AB A*B P y prop P
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Trajectory Generation (and Tracking)

Given that a (linear) system is reachable, how do we compute the inputs??
e Method #1: formulate as an “optimal control problem” and solve numerically
T
m(lgl/ L(z,u)dt subjectto &= f(z,u), z(0) = zo, 2(T) = xy
ul 0
e Method #2: create a stabilizing control law to an equilibrium point: u = u. + o(x-xe)

lim z(t) = z. for all z(0) € R" =  z(0) =20 = z(c0) =z,

t—o0

® These methods only work if the system is reachable and almost always require that
the linearization at a nearby equilibrium point be reachable (which we can check)

Given feasible input/state trajectory, use feedback to manage uncertainty
® General picture = trajectory generation (feedforward) + feedback compensation

n Types of uncertainty:

Trajectory

d
Generation | d ¢ [ sme |Um l u l y " y ® Process disturbances
) Feedback (D)= Process |—=(2) e Sensor noise
T H 2 e Unmodeled dynamics
1
ironment | —----- —1 (=— Ob. .
Environment . senet More on trajectory

generation in CDS 112
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Control Design Concepts

System description: single input, single output system (MIMO also OK)

&= f(z,u) xeR" z(0) given
y=nh(z,u) uweR yeR

Stability: stabilize the system around an equilibrium point
e Given equilibrium point z. € R™, find control “law” u=a(x)
such that
lim z(t) = z. for all z(0) € R"

t—o00

Reachability: steer the system between two points
‘/0 Given z,,z; € R", find an input u(t) such that

& = Az + Bu takes z(tg) = z9 — z(T) = x5

Tracking: track a given output trajectory
e Given y,(f), find u=a(x,f) such that

tliglo(y(t) — yq(t)) = 0 for all z(0) € R"
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State space controller design for linear systems

&= Az + Bu x € R" z(0) given

T
B x(T)=e""x,+ [ e"" ™ Bu()dt
y=Cz ueR, yeR 1'[0

Goal: find a linear control law u=-Kx + k- r Controller | Process
such that the closed loop system

1 0w | i=Ar+Bu
i = Az + Bu = (A — BK)x + Bk,r rﬁ’ ® 5\9 y=Cx+ Du y

is stable at equilibrium point x. with y. = r.

Remarks
e If » =0, control law simplifies to u = -K x and system becomes & = (A — BK )z
e Stability based on eigenvalues = use K to make eigenvalues of (4 - BK) stable
® Can also link eigenvalues to performance (eg, initial condition response)
e Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (4 - BK) can be set to arbitrary values if and only if the
pair (4, B) is reachable.

Python users: use python-control toolbox
CK = : i python-control.org
MATLAB/Python: K = place(A, B, eigs) (available at python-control.org)
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Example #2: Predator prey

System dynamics

dH H\ aHL

T H{1-2) -2 g>
g~ ( k) crH' 20,
dL . aHL

&y —dL L>o0.
dt c+H ’ -

e Stable limit cycle with unstable equilibrium point
at He = 206, Le =29.5

e Can we design the dynamics of the system by §i

modulating the food supply (“«” in “r + u” term) Fw

. o age . / ...“ W ..«" L [
Q1: can we move from some ]r)ltlal populgtlon il Sl bl ot s b
of foxes and rabbits to a specified one in time Yo

T by modulation of the food supply?
e Eg: need large amount of food for 1872 Olympics

Q2: can we stabilize the lynx population around
a desired equilibrium point (eg, Ls = ~30)?
e Try to keep lynx and hare population in check

Lynxes

Approach: try to stabilize using state feedback law
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Example #2: Problem setup

Equilibrium point calculation

f = inline('predprey(0, x)', 'x');

dH H wHL xeq = fsolve(f, [20, 30])'; He = xeq(l); Le = xeq(2);
dt = (7’ + U)H (1 - k) - c+H % Generate the linearization around the eq point
App = [
dL aHL -((a*c*k*Le + (c + He)"2*(2*He - k)*r)/((c + He)"2*
E = TH —dL (a*b*c*Le)/(c + He)"2, -d + (a*b*He)/(c + He)
C .

1;
Bpp = [He*(1 - He/k); 01;

® x.=(20.6,29.5), uc =0, L. = 29.5

% Check reachability
if (det(ctrb(App, Bpp)) ~= 0) disp “reachable”; end

Linearization
e Compute linearization around equilibrium point, x.:

0 0 d
A=l B=l —$%A(x—xe)+B(u—ue)+
0x Ul ) dt

e Redefine local variables: z=x-x.,, v=u- u.

acL,  2Hcr _ aH,
d |z1| _ | " rm? o TT o+ H, Z1
N - abcL, abH, d . +
dt |22 (c+H.)? c+H, 22

higher

order terms
(g 54,)

e Reachable? YES, if q, b # 0 (check [B AB]) = can locally steer to any point
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Example #2: Stabilization via eigenvalue assignment

ACLlie el Qalle He
0[] [t = e et ] ) [m0- )]
dt Z9 abcL, abH,. —d .

(ct+H,)? c+H. 22 0
Control design: o -
v=—Kz=—k(H—H.) —ko(L — L) oy Lynx
u=1ue+ K(x—x¢) gso{' \
g 40 \\
Place poles at stable values < a0 [\/ __________________
® Choose A =-0.1,-0.2 20
e MATLAB: Kpp = place(App, Bpp, [-0.1; -0.2]); O e a5 100

Time (years)

Key principle: design of dynamics
e Use feedback to create a stable equilibrium point

More advanced: control to desired value r =L,
(Wed)

Controller Process

: N X = Ax + Bu
—r k, (%) ——.
T coo s y=Cx+Du ’

Lynxes
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Implementation Details

Eigenvalues determine performance
e For each eigenvalue A\,=o; + jo,, get _3;0-4
a contribution of the form '

N /Z=0 2 ‘ ‘
N 15¢
=1
TN Re v,

yi(t) = e~ 7" (asin(w;t) + beos(w;t)) o

T RT

z=2

e Repeated eigenvalues can give addi-
tional terms of the form # eo */o = be careful

Use observer to determine the current state if you can’t measure it

ug d n

w d A .

iC : Fezctizg:ck & ® Process ()

t x
-1 Observer

» Estimator looks at inputs and
outputs of plant and estimates
the current state

y

> e Can show that if a system is
observable then you can
construct and estimator

* Use the estimated state as the

feedback u = Kx

* Next week: basic theory of state estimation and observability
* CDS 110b: Kalman filtering = theory of optimal observers (and basis for particle filters, ...)
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Summary: Reachability and State Space Feedback

Xo
T = Az + Bu \ /[ ;)
Xy

y="Cx Nl

Key concepts

e Reachability: find u
St Xg —> Xf

® Reachability rank
test for linear
systems

e State feedback to
assign eigen-

Lynxes

Lynxes

values

CDS 101/110, 19 Oct 2015 Richard M. Murray, Caltech CDS 14




