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Abstract

A short description of the prerequisites involved in succesful code
generation of systems of ordinary differential equations and some
other expressions is made. It is followed by a brief manual for exmex,
the code generating procedure for exporting equations from Maple to
MATLAB.

1 Introduction

Systems of ordinary differential equations, ODEs, is the result of physi-
cal modeling in many fields, chemistry, physiology, and biology are some
examples other than mechanics. Preparing the equations of motion for
efficient numerical evaluation is a vital part of the analysis process, es-
pecially if extensive numerical analysis is about to be performed. exmex
was designed to generate C code of ordinary differential equations and
provide useful tools to aid in the analysis of the dynamical systems gov-
erned by these equations. The code generated by exmex is designed to be
linked as external functions to MATLAB and called as any other functions
from within a MATLAB workspace. The name exmex was derived as an
acronym to EXport Matlab EXternal.

The choice of MATLAB was purely one of convenience, both com-
mercial and free software exist that have more or less the functionality
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of MATLAB, examples are MATRIXX and SCILAB. Many of these can
also link compiled code for direct access from the main program. For in-
stance, succesful experiments have been made with linking slightly modi-
fied code generated by exmex to SCILAB, and tests have been made with
exporting code from the computer algebra software MuPAD.

2 Methods and concepts

The process of transforming ordinary differential equations to computer
code consists of the steps shown in figure 1.

Differential equations

Computation sequence(s) Computer code

Compiled function

?

-

?

Figure 1: Systems of ordinary differential equations are translated into
compiled functions by the steps shown in the figure. The computation
sequences are determined based on what the equations will be used for,
and what options the function will respond to.

We will not dwell on concepts and methods to understand all details of
the process, but a few are important to understand before we turn to the
actual use of exmex.

2.1 Mass matrices

Reformulating higher order systems on first order form creates a block
structure of the mass matrix where the number of blocks equals the order
of the original ODEs. The structure is seen in the following matrix rep-
resentation of the dynamic equations and the kinematic differential equa-
tions for a mechanical system

�
M� 0
0 W ��

� �
_u�
_q

�
=

�
R�

u�

�
: (1)
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A typical case where the second block is explicitly given, is the use of _q = u
as kinematic differential equations, which normally renders the first block
matrix to have a full, or nearly full, structure.

Well designed algorithms for solving equations (1) take advantage of
the block structure. The exmex-package supports systems converted from
second order in a general way by accepting two separate systems of ODEs
as arguments. These may be independently specified on implicit or ex-
plicit form.

2.2 Subexpressions

Even if Maple’s optimization algorithm can locate and remove excessive
subexpressions, it can be useful to interactively introduce intermediate
variables during the derivation process. Sometimes an expression is for-
mulated that should be introduced at a large number of positions in the
equations being derived. This can happen at all stages during the deriva-
tions, in the specification of geometry, velocity, acceleration, or forces.
Normally, the earlier it is specified the more it spreads. The function of
the optimization algorithm is to do reverse engineering and find all the
identical expressions again. If the equations are expanded, much of the
structure of the specific expression may be lost which can inhibit the algo-
rithm from finding many of the expressions. Usually there is an increase
in complexity when expansion is performed but it can make the equations
less complex.

An example where an intermediate variable is worthwhile to introduce
manually is to represent the magnitude of relative velocity between a par-
ticle and a surrounding medium. Such expressions are used for example
when modeling fluid drag on particles. Consider a particle with position
q1n1

+ q2n2
+ Ln

3
relative to a reference point,

> r1:=Evector(q1,q2,L,FN):
With the identity transformation as kinematic differential equations, the
velocity v

1
relative to the reference frame FN is

> v1:=subs(kde,diffFrameTime(r1,FN));

v1 := [[u1 ; u2 ; 0]; FN ]

Now, if the particle is suspended in a fluid moving with a steady velocity
vm = �Un

1

> vm:=Evector(-U,0,0,FN):

the velocity of the particle relative to the fluid is the difference
> v1 &-- vm;
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[[u1 + U; u2 ; 0]; FN ]

Introduction of an intermediate variable to represent the value of the mag-
nitude of the velocity difference can be done by keeping a definition of the
new variable in a set or list. The intermediate variable is not a Maple vari-
able in the sense that it holds a value, it is only used as a symbol on the left
hand side of the equation that defines it, and as a symbol in the positions
where it replaces the subexpression. If we choose vd as the name of the
new variable the definition can be stored as a member of the list sx ,

> sx:=[vd=Emag(v1 &-- vm)]:
The new variable is then used wherever the difference should appear, for
example in the dynamic pressure p = �v2d=2.

2.3 Derivatives of the dynamical system

Numerical analysis of dynamical systems benefit from a number of deriva-
tives of the base system, the jacobian, and the first order variational equa-
tions are two of them. Functionality for these purposes have been devel-
oped and is included in exmex. Code for evaluation of the jacobian is op-
tionally derived and generated for normal systems as well as variational
systems where the base system is extended with the variational equations.

2.4 External functions

Differential equations with discontinous functions as forces, or perhaps
even time dependent functions from real time measurements of physical
elements is plausible. To process such systems it is sometimes useful with
functions not explicitly defined in Maple, but available as a function to
include when compiling the generated code. External functions are sup-
ported in systems processed by exmex, and one or two options are used
to define them and their properties. One argument specifies all files to in-
clude while compiling the generated source code. These files are assumed
to hold functions written in C and used by function calls in the equations.

2.4.1 Example

Suppose we have a system where a force is defined as a function of con-
figuration,

f1 =

�
0 q1 > 0
�kq1 q1 < 0

(2)
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Such a function is difficult to define in Maple but more easily done in
C code,

double f1(double q1, double k)
{

if (q1>0.0)
return 0.0;

else
return -k*q1;

}

The indeterminate form f1(q1,k) is used in the Maple expressions and
when generating the code for a derivative evaluator one includes an op-
tion that specifies a file where f1 is defined.

2.4.2 Derivatives of external functions

If code for the jacobian or variational equations are generated, the deriva-
tives of the external functions with respect to the variables must also be
available as external functions. Differentiations are performed with re-
spect to the variables of the systems, not the parameters. Derivatives may
be named arbitrary, in which case a specification of all names must be
given as an argument to exmex. Otherwise derivatives should follow
the pattern where new functions are introduced by concatenating d, the
function name, d, and the variable name. The derivative of our example
function would be named df1dq1 . It would have to be specified in an
included file,

double df1dq1(double q1, double k)
{

if (q1>0.0)
return 0.0;

else
return -k;

}

Information about how derivatives are named may be declared in two
ways, both in the form of an equation with the identifier diffset or
‘diffset‘ to the left and a list on the rigth hand side. If the naming
convention described above is followed, it is enough if the list contains
function calls specifying names and arguments of the external functions.
Arbitrary names of derivatives must be specified with their full depen-
dencies in the list. If the last was true for the example of this section, the
appropriate option would be
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‘diffset‘=[diff(f1(q1,k),q1)=df1dq1(q1,k)];

As the names involved follow our naming convention, the less complex
option

‘diffset‘=[f1(q1,k)];

will do perfectly. The difference in complexity makes the latter alternative
considerably more useful for large systems.

2.5 The C code

Two individually specified systems of ODEs are arguments to the code
generating functions of exmex. A single system is of course also a valid
input, in that case one of the specifications is left empty. For the purpose
of generating computation sequences it is assumed that the two systems
represents parts of one system of ODEs. This means the union of variables
for each system should be the variable set for the entire system. Subex-
pressions are specified in one separate argument, but are considered valid
for the complete system.

2.5.1 Variable names

Quite a free naming convention is in use, only a few names are reserved.
Among them is the variable t which represents time and must not be used
for anything else. Names consisting of a t and a number, i.e. t1 , t2 ,
: : : , are given to temporary variables during symbolic optimization and
other use is likely to destroy the validity of the optimized computation se-
quence. Maple’s C-code generator can occasionally, for very complex ex-
pressions, generate intermediate variables which are named s1 , s2 , and so
on. The best method to detect the introduction of such variables seem to be
the compilation errors that occur as these variables are not declared. The
fix is to manually edit the code and add the declarations, and it is therefore
recommended to avoid these names. Internal variables are named with the
string exmex somewhere in the name and should be easy to avoid. The
C code is adapted to the conventions in mex-files for MATLAB 5 (early
versions of exmex generate code for both MATLAB 4 and 5).

2.6 Compilation of generated code

The script mex that compile external functions for use with MATLAB is
available with the MATLAB distribution for the specific platform. Source
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codes produced with exmex have been used on SunOS 4, Solaris 2.5, Mac-
intosh, Win95/NT, IBM RS/6000, and Linux. Compilers used on the Sun
have been Sun Sparc C Compiler and the GNU compiler gcc, MPW C on
the Macintosh, Watcom C/C++ in the PC environment, and XLC on the
IBM RS/6000 series. In Linux gcc was used. A typical command is mex
file.c , and most unices are like this. The command can be given either
in MATLAB or in a shell. Similar syntax works on a correctly configured
95/NT-machine. For the IBM RS/6000 with AIX, a specific compiler had
to be specified with the option CC=c89, and for large systems the flag
CFLAGS="-qspill=5000" was added.

The most important isssue for compilation is to avoid compiler opti-
mizatoin if the code has been symbolically optimized. Apparently, the
use of compiler optimization on already optimized code does not increase
performance, but slows down compilation significantly.

3 Manual

The use of exmex is described together with the supported options.

3.1 Initialization

The functions are available as text files to be loaded into Maple with the
read command. If they are not used with the Sophia package for me-
chanics, the linalg library must be loaded first, for example by execut-
ing with(linalg): in Maple. There are a few support routines, among
them is init exmex used to load some necessary libraries by executing
the statement init exmex(): at a Maple prompt. The libraries are C,
optimize , and cost used to generate code, do symbolic optimization,
and compute the numeric cost of evaluating expressions. In Maple V Re-
lease 3 the initialization includes a correction of a bug in the optimize -
library that causes erratic behaviour when removing redundant tempo-
rary variables. For Maple V Release 5 there is a modified version of the
C-code generator that allows writing to already open files. The modified
function is called SC. When the package is initialized one must not use the
symbol C as a variable because it is the name for the function that gener-
ates code.
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3.2 User interface

Generating and using functions is made in two different softwares, Maple,
and MATLAB. The syntaxes involved in processing of ODEs and matrices
and the subsequent use of the generated functions is schematically spec-
ified in figure 2. As we can see, each environment has a specific syntax

Numeric result

Using function MATLAB syntax

Generating function Maple syntax

Equations

?

?

?

Figure 2: The flow of expressions through different environments when
generating functions and using them in another environment.

which the user must adapt to. In Maple, specifications must be made such
that the generation process is completely determined. The generated func-
tion is then used with a specific syntax in MATLAB.

3.3 exmex

The exmex procedure is available for Maple V Release 3, 4, and 5, but only
the latest version is described here. It generates derivative evaluators, as
mex-functions in C code. The calling syntax of the generated functions
was designed for use with the family of solvers for ordinary differential
equtaions in MATLAB, ode45 , ode15s , and others. Parameters may be
defined as static declarations in the source code or parsed via the integra-
tors fourth argument. By default, code for MATLAB version 5 is gener-
ated.

The integrators in MATLAB version 5 support events, evaluation of
the jacobian, and asking the function for suitable initial values etc. Events
are used to trigger an action of the integrating function when a value of
some expression is reached. The action can be to stop the integration or
collect the state in a matrix. Trigging happens when one of any number
of functions reach the value zero, and can be specified as dependent or
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independent of direction. Use of these possibilities is specified with an
option.

exmex can also produce functions written in C with the syntax adapted
for Simulink. This is identified by giving an option, and the choices are
described later on.

3.3.1 Help files

MATLAB mex-functions can hold no comments for help information. A
standard method to overcome this is to have an m-file with the same name
which holds the help information, and such a file is automatically gener-
ated by exmex.

3.4 Maple syntax

Seven arguments are required, and options may be given in any order after
those. More specifically the syntax follows,

exmex(name,path,eqs1,eqs2,sub_ex,der_lst,var_lst,opt,...)

name is a Maple symbol, string, or unassigned name, determining the
name of the source code and the help file. The proper extensions .c and
.m are added automatically. A typical name is "file" .

path is a Maple symbol, string, or unassigned name specifying the di-
rectory where the generated files are created. The exact form of the string
is platform specific. On Unix systems the directory separator is the slash
/ , on Macintosh systems the colon : is used, and the DOS/WIN world has
the backslash, n. An example path for a unix system is "/home/user/maple/" .

eqs1 and eqs2 should each be a Maple list, which must contain one
or two lists. One list is used for equations on state space form i.e. explicit
form, while two lists are used to specify equations on implicit form. The
second list then contains the names of the variables to solve for. A valid
example with two explicit equations is

[[x1t=sin(x2),x2t=x1]]

Implicit equations should be specified by the first list containing the im-
plicit equations and the second list the names of the variables to solve for.
The values of the variables are found by numeric solution of the system.
A simple example is a list with two sublists,

[[x1t+cos(x2)*x2t-sin(x2),x2t-x1],[x1t,x2t]],
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which represents the implicit equation system
�
1 cos(x2)
0 1

� �
_x1
_x2

�
=

�
sin(x2)
x1

�
: (3)

An empty system is specified by a list with an empty list i.e. [[]] .
sub ex is a Maple list of equations. These equations are evaluated in

the specified order before the other two groups of equations. If no subex-
pressions are used, an empty list should be given as argument.

der lst is a Maple list of variable names used for state space deriva-
tives. After evaluation of all given equations the values of these variables
put in a vector is the result of the function. The combination of unknowns
in sys1 and sys2 should equal the names in this list. In the examples
above, the derivatives would be represented by [x1t,x2t] .

var lst is a Maple list of variables used for state space position. These
variables represent the corresponding numeric value of the vector argu-
ment to the function during the evaluation of the equations. A list with
variable names for the previeous explicit and implicit cases is [x1,x2] .

3.4.1 Options

Options are given in any order or combination after the first seven argu-
ments.

3.4.2 Parameters

Parameters are specified with an equation where the left hand side is the
string ‘parameters‘ and the right hand side a list of parameter names,
as in ‘parameters‘=[par1,par2,...] . The generated function is writ-
ten so as to expect one vector with the parameter values as components
and the order of the values should correspond to the order in which they
were declared in this option.

3.4.3 Static variables

Parameters may also be defined in the code as statically declared variables
by an equation such as ‘statics‘=[stat1=val1,stat2=val2,...] .
The list defines names and values to be declared, which can later be edited
but require recompilation to take effect.
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3.4.4 Simulink blocks

With a similar technique as the previous options, code for Simulink blocks
is specified by an equation of the form ‘simulink‘=[a1,a2,a3] , where
a1 , a2 , and a3 are lists. The first list holds names of input variables, and
the second list holds output expressions, i.e. functions of the variables or
time derivatives. The third list is a specification of subexpressions used in
the expressions defined in the second list. It is also possible to generate
general blocks, without any differential equations the block will generate
a feedthrough block that can compute general functions of the inputs.

3.4.5 Equation solver

The flag ‘nocb‘ forces an internal solver of linear equation systems to be
included in the source file and used for implicit equations. It is the default
for variational or jacobian evaluations of implicit systems.

3.4.6 Integration options

The integrators of MATLAB version 5 support initialization, events, eval-
uation of the jacobian and other options. Support for this is generated by
giving an equation with left hand side ‘v5‘ , and the rigth hand side a list
of options. These options are either a symbol, or equations where the left
hand side is a symbol, and the right hand side a list of the detailed argu-
ments. Supported options are ‘jacobian‘ , ‘jpattern‘ , init=[...] ,
and events=[...] .

The option ‘init=[...]‘ is used to define what the function can per-
form besides of the normal evaluation of derivatives. The list is built up of
three elements, of which the first two are rarely used. They hold, respec-
tively, two numeric values that represent the time interval for integration
that the function suggests if asked by the integrator, and numeric values
suitable for initial values. Third is a list of names, where the names or
symbols indicate what the function can perform, this means one or many
of ‘events‘ , ‘jacobian‘ , or ‘jpattern‘ . A five degree of freedom
system that can compute the jacobian could be given an option

‘init‘=[[0 1],[1.1 1.2 1.3 1.4 1.5],[‘jacobian‘]

Event handling is defined by an equation ‘events‘=[...] , where
the right hand list contains three lists. The first of these lists contains two
lists that specifies the expressions which should trigger events. Of these
two, the first holds definitions of subexpressions and the other hold the
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actual expressions. For each expression, there are two items to specify,
the direction of passage through zero which triggers the event, and the
action taken if the event occurs The second list hold integers, as many
as the expressions, and they indicate if action should be taken or not, by
ones and zeros. The third list also contains integers, but minus one, zero
or one, which specifies directions which triggers events. Consider a two
dimensional example where events occur if q1 pass through zero from the
positive side, or q2 becomes zero regardless of direction. The integration
should be stopped when q2=0 and events triggered on q1=0 should only
be recorded. A valid option for this scenario is

‘events‘=[[[],[q1 q2]],[0 1],[-1 0]

The symbol ‘jacobian‘ forces exmex to include code for optional
evaluation of the jacobian, for explicit and implicit equation systems as
well as variational systems.

The symbol ‘jpattern‘ makes exmex include code for returning a
conservative estimate of the pattern of non-zero entries of the jacobian of
a variational system only.

To conclude,

‘v5‘=[‘init‘=[...],‘events‘=[...],‘jacobian‘,‘jpattern‘]

where each list contain appropriate definitions a generic option to exmex.

3.4.7 External functions

Inclusion at compilation time of files with externally defined function is
made by an option of the form

‘includes‘=[‘"file1.c"‘,‘"file2.c"‘,...]

3.4.8 Variational system

The flags ‘variationalequations‘ or variationalequations de-
clare that code for a variational system should be generated. It is not pos-
sible to generate Simulink blocks based on variational equations.

3.4.9 Derivatives of external functions

The option ‘diffset‘=[...] as defined in section 2.4.2 defines names
of derivatives of external functions.
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3.4.10 Optimization

The options ‘notoptimized‘ , or notoptimized , forces exmex to not
use the symbolic optimization but instead produce code direct from the
given equations. This is not recommended, because the equations may be
extremely large and the time reduction with symbolic optimization can be
of several orders of magnitude.

3.5 MATLAB syntax

Suppose we have a generated function func with no parameters. Evalu-
tion of the derivatives at time t and configuration x is made with a call
func(t,x) . The third argument is reserved for flags, and parameters are
passed as the fourth argument, func(t,x,‘‘,p) , where p is a vector
with parameter values.

3.5.1 Flags

Flags are used to call for optional behaviour, we saw earlier the supported
flags which are ’init’ , ’events’ , ’jacobian’ , and for certain sys-
tems ’jpattern’ . The call [a1,a2,a3]=func([],[],’init’) would
return in a1 the suggested time period for integration, in a2 a set of initial
values, and in a3 an object that specifies what flags can be processed, i.e.
the most useful answer. Called with the flag ‘events‘ three vectors of
equal size are returned. The first is the event value vector, which is a func-
tion of time and state. The two other vectors control the integrators use
of the event value, termination of integration is specified in by the second
and directional dependence of the third. More information about this is
found in a manual for MATLAB.

The flag ’jacobian’ causes the function to evaluate the jacobian ma-
trix, and the flag ’jpattern’ returns a sparse matrix with the general
sparsity pattern of the jacobian of a variational system.

4 Examples

The many options and complex syntax is perhaps most easily explained
by examples. Here are some demonstrations of the syntax and capability
of the functions. In the examples, three different dynamical systems are
investigated briefly to illustrate a some of the methods a dynamicist ap-
plies and how exmex can help in these investigations. The systems are
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used here because they have a limited number of variables, yet exhibit
interesting properties.

4.1 Spherical pendulum

First we demonstrate the use on a set of equations governing the motion of
a spherical pendulum with length L. The system is an accurate model of a
Focault pendulum since we model it as located at a latitude � on a planet
rotating with a constant angular velocity 
 and gravitational acceleration
g. A difference is that the hinge point is forced vertically with a harmonic
function of amplitude a and angular frequency !. The vertical forcing, as
well as the rotation of the planet, is determined by parameters. Thus our
equations can be used to investigate a large family of cases.

Dissipation is introduced as drag acting on the particle in the direction
opposite to the instantaneous velocity. It is proportional to a constant c
times the square of velocity relative to a frame rotating with the planet.
The configuration is determined by time and the two coordinates q1 and
q2, which are angles that point out the direction from the vertical in the
north-south vertical plane, and the deviation from this plane respectively.
The equations of motion are two second order equations rewritten to first
order,

cos(q2 )L(�sin(q1 )mg � c v1mag (sin(q1 ) a cos(! t)! + cos(q2 ) u1 L)

�m cos(q2 ) u1t L+ 2m sin(q2 ) u2 u1 L+ma sin(! t)!2 sin(q1 )

� 2 cos(�) sin(q1 )m
cos(q2 ) u2 L� sin(�) cos(q1 )m
2 a sin(! t) cos(�)

+ 2 sin(�) cos(q1 )m
cos(q2 ) u2 L+ cos(q1 )m
2 cos(q2 ) sin(q1 )L

� 2 cos(q1 )m
2 cos(q2 ) sin(q1 )L cos(�)2

+ 2 sin(�) cos(q1 )2m
2 cos(q2 ) cos(�)L+ cos(�)2 sin(q1 )m
2 a sin(! t)

� cos(�)m
2 cos(q2 ) sin(�)L)

and

�L(sin(q2 ) cos(q1 )mg � c v1mag (�sin(q2 ) a cos(! t)! cos(q1 )� u2 L) +m u2t L

� cos(�)2 cos(q1 )m
2 a sin(! t) sin(q2 ) + 2 cos(q2 )2m
 sin(�) cos(q1 ) u1 L

� 2 cos(q2 )m
cos(�) a cos(! t)! + sin(q2 )m u1 2 cos(q2 )L

� 2 cos(q2 )2m
cos(�) sin(q1 ) u1 L� cos(q2 )m
2 cos(�)2 sin(q2 )L

� cos(q2 )m
2 cos(q1 )2 sin(q2 )L+ 2 cos(q2 )m
2 cos(q1 )2 sin(q2 )L cos(�)2

+ 2 sin(q2 ) sin(�) sin(q1 )m
2 cos(q2 ) cos(�) cos(q1 )L

� sin(�) sin(q1 )m
2 a sin(! t) cos(�) sin(q2 )�ma sin(! t)!2 cos(q1 ) sin(q2 ))
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where the symbol v1mag is used to represent the magnitude of the velocity
relative to a reference frame fixed in the planet. A definition of v1mag is
stored in a variable sx ,

sx := [v1mag = sqrt((sin(q1 ) a cos(! t)! + cos(q2 ) u1 L)2

+ (�sin(q2 ) a cos(! t)! cos(q1 )� u2 L)2 + cos(q2 )2 cos(q1 )2 a2 cos(! t)2 !2)]

Rewriting the equation to first order was with u1 = _q1 and u2 = _q2.
The variable ieq holds the implicit equations while sx is used for the
common subexpressions. A function that evaluates the derivatives based
on the implicit equations is generated by the Maple code

fp:="/home/user/maple/"
eqs1:=[ieq,[u1t,u2t]]:
eqs2:=[[q1t=u1,q2t=u2]]:
varst:=[u1t,u2t,q1t,q2t]:
vars:=[u1,u2,q1,q2]:
ps:=‘parameters‘=[Omega,m,L,g,omega,a,lambda,c]:
exmex("pendi",fp,eqs1,eqs2,sx,varst,vars,ps);

We demonstrate numerical integration of the system with parameter
values 
 = 0, m = 1, L = 1, g = 1, ! = 30, a = 0:2, � = 0, and c = 0:2,
over the time interval 0 to 4 time units. Initial values are u1 = u2 = 0,
q1 = 0:5, and q2 = 0:8, and the following MATLAB commands perform the
integration and plot time histories of the configuration.

ti=[0 4];
x0=[0 0 0.5 0.8];
p=[0 1 1 1 30 0.2 0 0.2];
[t,x]=ode45(’pende’,ti,x0,’’,p);
plot(t,x(:,3),’--’,t,x(:,4),’-’);grid on;
xlabel(’Time / s’)
ylabel(’Angle / rad’)

The result of the plot command is seen in figure 3.
Another interesting case of this problem illustrates how the results can

be used to uncover further facts of the system. It is tempting to see the
particle track over the floor for a freely moving pendulum on a rotating
planet. This track depends on the configuration and can be computed
when the time histories from an integration are available. The northerly
position relative to the hinge point is L cos(q2) sin(q1), and the easterly is
�L sin(q2). Plotting two cases with different damping can be done with
the following code.
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Figure 3: Time histories of the coordinates q1 (dashed) and q2 (continuous)
for a case integrated in the text. From a dynamics viewpoint, the most
interesting observation here is that q1 tends toward a value of �. That
means the vertical position with the mass above the hinge point is stable
when a rapid enough forcing is applied to the hinge point, a well known
fact and explained in [1] among others.

ti=[0 100];
x0=[0 0 0.5 0];
L=10;
p=[0.01 1 L 10 0 0 1.04 0.01];
[tx,x]=ode45(’pende’,ti,x0,’’,p);
p=[0.01 1 10 10 0 0 1 0.001];
[ty,y]=ode45(’pende’,ti,x0,’’,p);
subplot(1,2,1);
plot(-L*sin(x(:,4)),L*cos(x(:,4)).*sin(x(:,3)));grid on;
axis(’equal’)
subplot(1,2,2);
plot(-L*sin(y(:,4)),L*cos(y(:,4)).*sin(y(:,3)));grid on;
axis(’equal’)
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Figure 4: Track over floor of pendulum moving freely under a hinge point
with all parameters defined in the previous code. It is located at a latitude
corresponding to Stockholm’s position. The left track is for a damping of
c = 0:01, and the right is for c = 0:001.

4.1.1 A van der Pol oscillator

Our next example concerns a van der Pol oscillator governed by the two
equations

_x1 = �x1 (1� x2
2
)� x2;

_x2 = x1:

In Maple this may be represented as a list of two explicit equations,

eqns:=[x1t=mu*x1*(1-x2ˆ2)-x2,x2t=x1];

To produce a function that calculates the derivatives x1t and x2t , exmex
could be invoked as follows,

fp:="/home/user/maple/"
xt:=[x1t,x2t]:
x:=[x1,x2]:
ps:=‘parameters‘=[mu]:
exmex("vdp",fp,[eqns],[[]],[],xt,x,ps);
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A few integrations for a parameter value of � = 1 is done with the
following MATLAB code, the corresponding plot is seen in figure 5.

[t,x]=ode45(’vdp’,[0 10],[0 1],’’,[1]);
plot(x(:,2),x(:,1),x(1,2),x(1,1),’o’);
grid on;hold on;
[t,x]=ode45(’vdp’,[0 10],[0 0.2],’’,[1]);
plot(x(:,2),x(:,1),x(1,2),x(1,1),’o’);
[t,x]=ode45(’vdp’,[0 10],[0 0],’’,[1]);
plot(x(:,2),x(:,1),x(1,2),x(1,1),’o’);
[t,x]=ode45(’vdp’,[0 10],[0 -0.2],’’,[1]);
plot(x(:,2),x(:,1),x(1,2),x(1,1),’o’);
[t,x]=ode45(’vdp’,[0 10],[2 -2],’’,[1]);
plot(x(:,2),x(:,1),x(1,2),x(1,1),’o’);
xlabel(’x2’);ylabel(’x1’);
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Figure 5: Phase section plot of a van der Pol oscillator for five different
initial conditions, indicated by circles. All but the one starting in the origin
tend to the stable limit cycle, whereas the origin seem to be a fixed point.

To get a quantitative measure on the stability of the apparent fixed point
in the origin we generate another function, vdpj , that can compute the
jacobian,

exmex(‘vdpj‘,fp,[eqns],[[]],[],xt,x,ps,‘v5‘=[‘jacobian‘]);
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After compilation with mex vdpj.c , two lines of MATLAB code returns
the eigenvalues at the origin,

>> vj=vdpj(0,[0 0],’jacobian’,1)
vj =

1 -1
1 0

>> ev=eig(vj)
ev =

0.50000000000000 + 0.86602540378444i
0.50000000000000 - 0.86602540378444i

The real part of the eigenvalues are greater than zero and we conclude that
the fixed point is unstable.

4.1.2 The Rössler system

The Rössler system is three ordinary differential equations,

_x = �y � z (4)
_y = x+ ay (5)
_z = b+ z(x � c) (6)

where three variables a, b, and c are parameters. The system has limit
cycles that become unstable and exhibit period doubling when the param-
eter a is changed. To investigate this we need to generate a function that
includes the variational equations. For processing with Maple we store a
representation of the equations in a list rs ,

rs:=[xt=-y-z,yt=x+a*y,zt=b+z*(x-c)];

Generating a function ross for the base system is then accomplished with

fp:="./":
dl:=[xt,yt,zt]:
vl:=[x,y,z]:
ps:=‘parameters‘=[a,b,c]:
v5o:=‘v5‘=[‘jacobian‘]:
exmex("ross",fp,[rs],[[]],[],dl,vl,ps,v5o);

The function is also prepared to compute the jacobian. Use of the func-
tion ross in MATLAB could for instance an integration between times 0
and 100, followed by a plot of the results.
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Figure 6: A trajectory of the Rössler system started in x = 3, y = 0, and
z = 2. It seems to settle on a periodic orbit, that intersects the x-z plane
close to the initial point.

x0=[3 0 2];
[t,x]=ode45(’ross’,[0 100],x0,’’,[0.3 2 4]);
plot3(x(:,1),x(:,2),x(:,3));grid on
xlabel(’x’);ylabel(’y’);zlabel(’z’);

After inspection of the plot in figure 6 it is plausible to suspect the ex-
istence of a stable periodic orbit. Two natural questions are how locate
periodic orbits, and how to categorize them as stable or not. Stability is
computed by integration of the variational equations along the orbit. We
thus need a function that evaluates the variational system. Identification
of passages through a Poincaré-section can be determined by event han-
dling of the MATLAB integrators. For this problem we use the x-z plane as
Poincaré-section and the condition for being on the surface is thus y = 0.
A parameter sf is introduced that determines if the integration should be
stoped or not by taking the values 0 or 1. This information is specified
in the option v5a , where the third list defines the direction through the
plane for which events are trigged. A suitable function can be generated
in Maple by

veq:=‘variationaleqs‘:
pse:=‘parameters‘=[a,b,c,sf]:
v5a:=‘v5‘=[‘events‘=[[[],[y]],[sf],[1]]]:
exmex("rossve",fp,[rs],[[]],[],dl,vl,pse,veq,v5a);

The following MATLAB script solves for a point xs on the surface y = 0
where the periodic orbits passes, and a plot of a few iterations are shown
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in figure 7. The method is Newton-Raphson iteration preceeded by an
initialization of the variables needed during the iteration process.

% This script solves for periodic orbits in the R össler system
io=odeset(’AbsTol’,1e-8,’RelTol’,1e-6,’events’,’on’);
% initial conditions
xn=[3 0 2];Xn=[xn reshape(eye(3),1,9)];
tn=6.3;
% parameter values
p=[0.3 2 4];P=[p 0];
% first integration and plot
[t,x,te,xe,ie]=ode45(’rossve’,[0 tn],Xn,io,P);
plot3(x(:,1),x(:,2),x(:,3),x(1,1),x(1,2),x(1,3),’o’);grid on;hold on
% flow gradient and vector field at integration end point
m=length(t)
rj1=reshape(x(m,4:12),3,3);
f1i=rossve(t(m),x(m,:),’’,P);
f1=f1i(1:3)
% equation system for dX
cm=[rj1-eye(3) f1 ; 0 -1 0 0];
rv=[xn’-x(m,1:3)’ ; 0];
dX=cm\rv
% iterate until error small enough
while norm(dX)>10ˆ(-6)

% new initial conditions
xn=xn+dX(1:3)’
Xn=[xn reshape(eye(3),1,9)];
tn=tn+dX(4)
% integrate and plot
[t,x,te,xe,ie]=ode45(’rossve’,[0 tn],Xn,io,P);
plot3(x(:,1),x(:,2),x(:,3),x(1,1),x(1,2),x(1,3),’o’);grid on;drawnow
% flow gradient and vector field at integration end point
m=length(t)
rj1=reshape(x(m,4:12),3,3);
f1i=rossve(t(m),x(m,:),’’,P);
f1=f1i(1:3);
% equation system for dX
cm=[rj1-eye(3) f1 ; 0 -1 0 0];
rv=[xn’-x(m,1:3)’ ; 0];
dX=cm\rv

end

4.1.3 Simulink block

Code for S-functions to Simulink blocks is generated based on the con-
tents of an option that specifies input variables, output expressions, and
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Figure 7: Iterations of periodic orbits in the Rössler system. Initial approx-
imation is x = 3, y = 0, and z = 2, and the intersections with y = 0 are
marked with a ring. After three iterations the components of the differ-
ence is on the order of 10�7, and the solution is close to xs � 3:1525486,
zs � 2:6631716, with a period of ts � 6:1746375.

subexpressions. We will not demonstrate computations with a function
generated for Simulink, only give an example of arguments to exmex.

‘simulink‘=[XXXX]

4.2 Trademarks

Sun, MPW, THINK C, Maple, Mathematica, MATLAB, Macintosh, and
others, are trademarks of their respective owner. exmex is available from
the Sophia home page located at URL http://www.mech.kth.se/sophia/
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